Introducing a package that allows you to create plots that are very useful for understanding the status of missing values in your data. You can create pattern displays of missing values, inflow-outflow plot, and correlations between data.
Package version is 0.0.1. Checked with R version 4.2.2.
Install Package
Run the following command.
#Install Package install.packages("ggmice")
Example
See the command and package help for details.
#Loading the library library("ggmice") ###Create Data##### #Install the tidyverse package if it is not already there if(!require("tidyverse", quietly = TRUE)){ install.packages("tidyverse");require("tidyverse") } set.seed(12345) n <- 300 TestData <- tibble(Group = sample(paste0("Group", 1:2), n, replace = TRUE), Data1 = sample(c(1:50, NA), n, replace = TRUE), Data2 = sample(c(LETTERS, NA), n, replace = TRUE), Data3 = sample(c(100:150, NA), n, replace = TRUE)) ######## #Show missing values in a pattern: plot_pattern command #Select data to plot:vrb option; specify column names if necessary #Square/rectangle of cells:square option; TRUE: square/FALSE: rectangle #Rotate variable labels by 90 degrees:rotate option;TRUE/FALSE plot_pattern(data = TestData, vrb = "all", square = TRUE, rotate = FALSE) #Create influx-outflux plot: plot_flux command #See:https://cran.r-project.org/web/packages/ggmice/vignettes/ggmice.html #Symbol label plot position: label option; in plot: TRUE plot_flux(data = TestData, vrb = "all", label = FALSE, caption = TRUE) #Display correlation between data: plot_corr command #Display correlation coefficients: label option #Display correlations between the same data: diagonal option plot_corr(data = TestData, vrb = "all", square = TRUE, rotate = FALSE, label = TRUE, diagonal = FALSE)
Output Example
・plot_pattern command
・plot_flux command
・plot_corr command
I hope this makes your analysis a little easier !!