This is the “imputeTS” package for interpolating missing values in time series. It is easier to use R commands to manipulate missing values, but you may want to try this package first.
Package version is 3.3. Checked with R version 4.2.2.
Install Package
Run the following command.
#Install Package install.packages("imputeTS")
Example
See the command and package help for details.
#Loading the library library("imputeTS") #Create Data #Converting to time series data with the ts command TestData <- ts(c(2,3,4,5,6,NA,7,8)) TestData Time Series: Start = 1 End = 8 Frequency = 1 [1] 2 3 4 5 6 NA 7 8 #Interpolate missing values in linear or in splines: na_interpolation command #Specified by option na_interpolation(TestData, option = "linear") Time Series: Start = 1 End = 8 Frequency = 1 [1] 2.0 3.0 4.0 5.0 6.0 6.5 7.0 8.0 #Interpolate missing values by the value #before or after the missing value: na_locf command #locf: interpolate by previous value,nocb: interpolate by backward value na_locf(TestData, option = "locf") Time Series: Start = 1 End = 8 Frequency = 1 [1] 2 3 4 5 6 6 7 8 #Interpolate missing values by mean, median, mode: na_mean command #option:mean,median,mode na_mean(TestData, option = "mean") Time Series: Start = 1 End = 8 Frequency = 1 [1] 2 3 4 5 6 5 7 8 #Randomly interpolate missing values: na_random command #upper_bound: lower bound, upper_bound: upper bound na_random(TestData, lower_bound = 100, upper_bound = 1000) Time Series: Start = 1 End = 8 Frequency = 1 [1] 2.0000 3.0000 4.0000 5.0000 6.0000 911.4419 7.0000 8.0000 #Remove NA: na_remove command na_remove(TestData) Time Series: Start = 1 End = 7 Frequency = 1 [1] 2 3 4 5 6 7 8 #Replace NA: na_replace command na_replace(TestData, fill = 99999) Time Series: Start = 1 End = 8 Frequency = 1 [1] 2 3 4 5 6 99999 7 8
I hope this makes your analysis a little easier !!