While heat maps and scatter plots are commonly used to express relationships, pie charts are also recommended. A pie chart is a method of expressing relationships between variables by arranging the variables around a circle and using line thickness and color.
Package version is 0.4.1. Checked with R version 4.2.2.
Install Package
Run the following command.
#Install Package install.packages("devtools") devtools::install_github("mjwestgate/circleplot") ##Add install.packages("amap") install.packages("scales")
Example
See the command and package help for details.
#Loading the library library("circleplot") library("amap") ###Creating Data##### n <- 10 TestData <- data.frame(Data1 = sample(1:100, n, replace = TRUE), Data2 = sample(1:100, n, replace = TRUE), Data3 = sample(1:100, n, replace = TRUE), Data4 = sample(1:100, n, replace = TRUE), Data5 = sample(1:100, n, replace = TRUE), Data6 = sample(300:400, n, replace = TRUE), Data7 = sample(1:100, n, replace = TRUE), Data8 = sample(1:100, n, replace = TRUE), Data9 = sample(300:400, n, replace = TRUE), Data10 = sample(1:100, n, replace = TRUE)) ######## #Calculating similarity using the "Dist" command of the "amap" package DistResult <- Dist(TestData, method = "spearman") #Assign data for graph labels attr(DistResult, "Labels") <- colnames(TestData) #Set colors in the "sales" package library("scales") x <- seq(0, 1, length = 9) ColPal <- seq_gradient_pal(c("#e1e6ea", "#505457", "#4b61ba", "#a87963", "#d9bb9c", "#756c6d"))(x) #Describing the Circle Plot:circleplot command #Display Style Settings:style option;"classic","pie","clock" #Adjustment of plot presentation:plot.control option #Contents are specified by list #plot.rotation,plot,par,point,point.labels,line.gradient,line.breaks #line.cols,line.widths,arrows,na.control are possible circleplot(DistResult, style = "classic", plot.control = list(line.cols = ColPal, line.widths = seq(1, 10, by = 1)[1:9]))
Output Example
I hope this makes your analysis a little easier !!