This is an introduction to the ggplot2 package for displaying the results of a principal component analysis in Biplot.
Package version is 0.55. Checked with R version 4.2.2.
Install Package
Run the following command.
#Install Package install.packages("devtools") devtools::install_github("vqv/ggbiplot")
Example
See the command and package help for details.
#Loading the library library("ggbiplot") ###Creating Data##### set.seed(1234) TestData <- matrix(rnorm(1000), 200) TestData <- as.data.frame(TestData) #Data Adjustment TestData[1:67,] <- TestData[1:67,] + 1 TestData[68:135,] <- TestData[68:135,] + 2 TestData[136:200,] <- TestData[136:200,] + 3 #Assign group information TestData <- cbind(c(rep("Group1", 67), rep("Group2", 67), rep("Group3", 66)), TestData) colnames(TestData) <- c("Group", paste0("ColName", seq(5))) ######## #Package stat: Principal component analysis with prcomp command TestPrc <- prcomp(TestData[, 2:6], scale. = FALSE) #Creating a biplot: ggbiplot command #Specifies the result of prcomp() or princomp(): pcobj option #Specify principal components to plot: choices option #Specify group information: groups option #Draw probability ellipses for each group: ellipse option #Plot correlated circles: circle option #The ggplot2 command is available ggbiplot(pcobj = TestPrc, choices = 1:2, obs.scale = 1, var.scale = 1, groups = TestData[, 1], ellipse = TRUE, circle = TRUE) + scale_colour_manual(values = c("#FF0000", "black", "#00FF00")) + theme(legend.direction = "horizontal", legend.position = "top")
Output Example
・ggbiplot command
I hope this makes your analysis a little easier !!