The following are examples of plots in the “ggplot2” package with “one variable: continuous variable” and “two variables: combination of continuous and discrete variables”. The commands for each data example are also presented, so please refer to the data format for the plots.
In order to use the “ggplot2” package, the “tidyverse” package is used.
Package version is 1.3.1. Checked with R version 4.2.2.
Install Package
Run the following command.
#Install Package install.packages("tidyverse")
Example
・Loading the “tidyverse” package and creating example data
#Loading the library library("tidyverse") ###Creating Data##### set.seed(1234) n <- 300 TestData <- tibble(Group = sample(paste0("Group", 1:4), n, replace = TRUE), X_num_Data = sample(c(1:50), n, replace = TRUE), Y_num_Data = sample(c(51:100), n, replace = TRUE), Chr_Data = sample(c("か", "ら", "だ", "に", "い", "い", "も", "の"), n, replace = TRUE), Fct_Data = factor(sample(c("か", "ら", "だ", "に", "い", "い", "も", "の"), n, replace = TRUE))) #Check TestData # A tibble: 300 x 5 Group X_num_Data Y_num_Data Chr_Data Fct_Data <chr> <int> <int> <chr> <fct> 1 Group4 31 83 だ い 2 Group4 33 95 か に 3 Group2 45 74 ら い 4 Group2 10 99 い い 5 Group1 22 90 の だ 6 Group4 13 65 い に 7 Group3 27 76 い ら 8 Group1 40 66 だ ら 9 Group1 18 92 い も 10 Group2 23 84 の も #######
・One variable: plots that can be created with continuous variables
#Creation of basic ggplot2 plot One_Cotinuous <- ggplot(TestData, aes(x = X_num_Data, color = Group, fill = Group)) #geom_area command #Set the aggregation method: stat option; "bin", "count", "density", etc. One_Cotinuous + geom_area(stat = "count", alpha = 0.7) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_area") #geom_density command One_Cotinuous + geom_density(alpha = 0.7) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_density") #geom_dotplot command #Bin display method: method options; "dotdensity", "histodot" One_Cotinuous + geom_dotplot(method = "dotdensity", binwidth = 5, alpha = 0.9) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_dotplot") #geom_freqpoly command One_Cotinuous + geom_freqpoly(binwidth = 5, size = 2) + scale_color_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_freqpoly") #geom_histogram command One_Cotinuous + geom_histogram(binwidth = 5) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_histogram") #geom_qq command ggplot(TestData) + geom_qq(aes(sample = X_num_Data, colour = Group)) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_qq") #geom_ribbon command One_Cotinuous + geom_ribbon(aes(ymin = X_num_Data - 10, ymax = X_num_Data + 10), alpha = 0.3) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_ribbon")
【Output Example】
・Two variables: x and y both continuous variables Plots that can be created with
#Creation of basic ggplot2 plot Two_Cotinuous <- ggplot(TestData, aes(x = X_num_Data, y = Y_num_Data, color = Group, fill = Group)) #geom_point command #Specify symbol: shape option; up to 0:25 can be specified #All types of plots in the example Two_Cotinuous + geom_point(alpha = 1, size = 4, shape = rep(0:25, length = 300)) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_point") #geom_rug command Two_Cotinuous + geom_rug(size = 1.5) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_rug") #geom_smooth command Two_Cotinuous + geom_smooth() + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_smooth") #geom_label command Two_Cotinuous + geom_label(aes(label = Group)) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_label") #geom_text command Two_Cotinuous + geom_text(aes(label = Group)) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_text")
【Output Example】
・Two variables: discrete variables, plots that can be created by combining continuous variables
#Creation of basic ggplot2 plot #Use up to 100 data to make plots easier to read Discrete_Cotinuous <- ggplot(TestData[1:100,], aes(x = Group, y = X_num_Data, color = Group, fill = Group)) #geom_violin command Discrete_Cotinuous + geom_violin() + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_violin") #geom_boxplot command Discrete_Cotinuous + geom_boxplot() + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_boxplot") #geom_dotplot command #Display dots: stackdir option; "up","down","center","centerwhole" Discrete_Cotinuous + geom_dotplot(binaxis = "y", stackdir = "center", binwidth = 5) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_dotplot") #geom_point command Discrete_Cotinuous + geom_point(size = 1) + scale_fill_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_point")
【Output Example】
・Two variables: plots that can be created by combining discrete variables for both x and y
#Creation of basic ggplot2 plot Two_Discrete <- ggplot(TestData, aes(x = Chr_Data, y = Fct_Data, color = Group, fill = Group)) #geom_count command Two_Discrete + geom_count() + scale_color_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_count") #geom_jitter command Two_Discrete + geom_jitter(size = 3) + scale_color_manual(values = c("#a87963", "#505457", "#4b61ba", "#A9A9A9")) + labs(title = "geom_jitter")
【Output Example】
I hope this makes your analysis a little easier !!